Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 110(20): 3302-3317.e7, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36070750

RESUMO

Homeostatic plasticity (HP) encompasses a suite of compensatory physiological processes that counteract neuronal perturbations, enabling brain resilience. Currently, we lack a complete description of the homeostatic processes that operate within the mammalian brain. Here, we demonstrate that acute, partial AMPAR-specific antagonism induces potentiation of presynaptic neurotransmitter release in adult hippocampus, a form of compensatory plasticity that is consistent with the expression of presynaptic homeostatic plasticity (PHP) documented at peripheral synapses. We show that this compensatory plasticity can be induced within minutes, requires postsynaptic NMDARs, and is expressed via correlated increases in dendritic spine volume, active zone area, and docked vesicle number. Further, simultaneous postsynaptic genetic reduction of GluA1, GluA2, and GluA3 in triple heterozygous knockouts induces potentiation of presynaptic release. Finally, induction of compensatory plasticity at excitatory synapses induces a parallel, NMDAR-dependent potentiation of inhibitory transmission, a cross-modal effect consistent with the anti-epileptic activity of AMPAR-specific antagonists used in humans.


Assuntos
Receptores de N-Metil-D-Aspartato , Sinapses , Humanos , Animais , Sinapses/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo/fisiologia , Homeostase/fisiologia , Neurotransmissores/metabolismo , Plasticidade Neuronal/fisiologia , Mamíferos/metabolismo
2.
Synapse ; 74(10): e22158, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32320502

RESUMO

CaMK2N1 and CaMK2N2 (also known as CaMKIINα and ß) are endogenous inhibitors of calcium/calmodulin-dependent kinase II (CaMKII), an enzyme critical for memory and long-term potentiation (LTP), a form of synaptic plasticity thought to underlie learning. CaMK2N1/2 mRNAs are rapidly and differentially upregulated in the hippocampus and amygdala after acquisition or retrieval of fear memory. Moreover, CaMK2N2 protein levels increase after contextual fear conditioning. Therefore, it was proposed that CaMK2N1/2 genes (Camk2n1/2) could be immediate-early genes transcribed promptly (30-60 min) after training. As a first approach to explore a role in synaptic plasticity, we assessed a possible regulation of Camk2n1/2 during the expression phase of LTP in hippocampal CA3-CA1 connections in rat brain slices. Quantitative PCR revealed that Camk2n1, but not Camk2n2, is upregulated 60 min after LTP induction by Schaffer collaterals high-frequency stimulation. We observed a graded, significant positive correlation between the magnitude of LTP and Camk2n1 change in individual slices, suggesting a coordinated regulation of these properties. If mRNA increment actually resulted in the protein upregulation in plasticity-relevant subcellular locations, CaMK2N1 may be involved in CaMKII fine-tuning during LTP maintenance or in the regulation of subsequent plasticity events (metaplasticity).


Assuntos
Proteínas de Ligação ao Cálcio/genética , Hipocampo/metabolismo , Potenciação de Longa Duração , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Hipocampo/fisiologia , Masculino , Plasticidade Neuronal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima
3.
J Alzheimers Dis ; 33(4): 941-59, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23109558

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, accumulation of the amyloid-ß peptide (Aß), increase of oxidative stress, and synaptic alterations. The scavenging of reactive oxygen species through their matrix enzyme catalase is one of the most recognized functions of peroxisomes. The induction of peroxisome proliferation is attained through different mechanisms by a set of structurally diverse molecules called peroxisome proliferators. In the present work, a double transgenic mouse model of AD that co-expresses a mutant human amyloid-ß protein precursor (AßPPswe) and presenilin 1 without exon 9 (PS1dE9) was utilized in order to assess the effect of peroxisomal proliferation on Aß neurotoxicity in vivo. Mice were tested for spatial memory and their brains analyzed by cytochemical, electrophysiological, and biochemical methods. We report here that peroxisomal proliferation significantly reduces (i) memory impairment, found in this model of AD; (ii) Aß burden and plaque-associated acetylcholinesterase activity; (iii) neuroinflammation, measured by the extent of astrogliosis and microgliosis; and (iv) the decrease in postsynaptic proteins, while promoting synaptic plasticity in the form of long-term potentiation. We concluded that peroxisomal proliferation reduces various AD neuropathological markers and peroxisome proliferators may be considered as potential therapeutic agents against the disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Química Encefálica/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Degeneração Neural/tratamento farmacológico , Proliferadores de Peroxissomos/administração & dosagem , Sinapses/efeitos dos fármacos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Química Encefálica/genética , Modelos Animais de Doenças , Humanos , Masculino , Transtornos da Memória/genética , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/patologia , Sinapses/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...